Блок питания усилителя класса а

Немного о блоках питания усилителей (часть I)

Опубликовано: Март 6, 2017 • Рубрика: Блоки питания

Казалось бы что может быть проще, подключить усилитель к блоку питания, и можно наслаждаться любимой музыкой?

Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

Стабилизатор или фильтр?

Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц :(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Параллельный или последовательный стабилизатор ?

Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.

Автор использует стабилитроны для питания операционных усилителей. При этом можно организовать индикацию напряжения питания практически без дополнительных затрат (светодиодам не нужны гасящие резисторы):


Защитные резисторы

Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и. денег. Между тем, дешёвый резистор может спасти ваш усилитель!

Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.

Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

Главное — падение напряжения

При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода :


В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.

Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

Импульсы заряда

Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

Увеличение по клику

На рисунке показан вариант печатной платы:

Увеличение по клику

Автору до сих пор попадаются усилители, у которых высокий уровень фона вызван неправильной разводкой земли и подключением дорожек от разных «потребителей» к выходам выпрямителя.

Пульсации

Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:


При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Автор: Джек Розман

Вольный перевод: Главного редактора «РадиоГазеты»

Усилитель JLH (John Linsley-Hood)

(Class-A)

Предисловие

Версий усилителя довольно таки много, но я бы хотел описать конкретно вариант 2005 года с двухполярным питанием. Усилитель, собранный по этой схеме может развивать мощность до 20-25Вт. Напряжение питания от +-18 до +-28в, ток покоя 1.5-3.5А. КПД усилителя составляет в среднем 20%. Это значит, что, например, при выходной мощности 20Вт – кушать усилитель будет 100Вт.

Корпус

Усилители, работающие в классе «А» имеют достаточно большое тепловыделение. Фактически греется все, начиная от силового трансформатора в БП и заканчивая выходными транзисторами УНЧ. Это необходимо учитывать при проектировании корпуса усилителя. Прежде всего следует обеспечить хороший теплоотвод для выходных транзисторов. На каждый транзистор (для пассивного охлаждения) рекомендуется площадь около 1500 кв.см. Для активного охлаждения требования можно немного снизить. Температура внутри корпуса также будет повышаться, поэтому следует организовать хорошую вентиляцию воздуха в корпусе.

Вот основная часть моего корпуса: днище и задняя стенка выполнены в виде загнутого листа стали, толщиной около 1мм.

Вот более позднее фото, корпус окрашен, практически всё «железо» на местах, днище усилено DIN-рейкой:

Радиаторы крепятся к корпусу винтами, в днище, рядом с радиаторами насверлено несколько отверстий в ряд (на этих фотках не видно), для проникновения холодного воздуха в корпус. А благодаря перфорированной верхней крышке теплый воздух свободно выходит из корпуса.

Радиаторы площадью примерно 2500см 2 достались мне с какого-то преобразователя 12В-100В.

Лицевой панелью и одновременно передней стенкой служит оргстекло, окрашенное с обратной стороны.

На задней стенке размещены входные и выходные разьёмы, выход на активный саб и сетевой разьём

Питание

К блокам питания усилителей в классе «А» предъявляются несколько

отличные от усилителей в классе АВ требования. Прежде всего следует учитывать тот факт, что блок питания будет постоянно находиться под нагрузкой. Это влечет за собой повышенный нагрев трансформатора, и необходимость использования радиаторов на выпрямительных диодах. Достал я где-то на радиорынке вот такой трансформатор без вторичных обмоток, с габаритной мощностью около 300Вт.

Намотал 4 вторички проводом 0,6мм, сложенным втрое и одну слаботочную обмотку для мелкой электроники, после чего трансформатор искупался в лаке и запёкся в печи. Расчётный номинальный ток получившейся обмотки = 2,6А, что более, чем вдвое превышает потребляемый усилителем ток покоя в 1А. Благодаря такому запасу трансформатор не греется при длительной работе.

Каждый канал УНЧ питается от отдельных обмоток трансформатора.

Вот трансформатор с обмотками для одного канала:

Остальная часть БП находится собственно на одной плате с УНЧ.

В качестве выпрямителя был применен диодный мост BR1010 на ток 10А, но при длительной работе под нагрузкой в 1А даже такой мост довольно прилично греется, поэтому я поставил на него половинку радиатора от северного моста материнки.

Также на этой плате находятся электролиты и мощные резисторы, которые вместе образуют CRC фильтр (6800мкФ + 0,33R + 6800мкФ), который подавляет пульсации напряжения. Питание на усилитель подаётся через 3А предохранители.

В первичной цепи трансформатора используется схема «мягкого пуска» («Soft-Start») для ограничения зарядного тока конденсаторов в БП, через несколько секунд срабатывает реле и своими контактами шунтирует мощный резистор.

Схема «мягкого пуска»:

Усилитель

После долгих издевательств с проводами в корпусе, было решено сделать несколько устройств на одной плате, чтобы избавиться от проводов при монтаже. Печатная плата крепится параллельно радиатору, и содержит собственно УНЧ, защиту АС и блок питания. Вот электрическая схема собственно УНЧ + немножко БП:

А вот фото получившейся конструкции:

Правильно собранный усилитель работает сразу, нужно лишь выставить ток покоя и уровень постоянки на выходе усилителя. Более подробно эти операции расписаны в FAQ (ссылка ниже).

Транзисторы BD139 и BD140 следует установить на небольшие радиаторы, при малом токе покоя эти транзисторы практически не греются. У меня каждый транзистор прикручен к алюминиевой пластинке 25х30мм.

Выходные транзисторы 2SC5200 впаяны с обратной стороны платы и прикручены к радиатору винтами М3, естественно всё промазано термопастой и проложена слюдяная прокладка между транзисторами и радиатором.

Защита АС

Это устройство защищает акустику при появлении на выходе усилителя постоянного напряжения любой полярности при пробое любого из вых. транзисторов., а также устраняет щелчки при включении, подключая акустику через несколько секунд после включения усилителя. Питается защита от того же источника, что и усилитель, поэтому при отключении питания, реле защиты отключается практически сразу, всё благодаря тому, что усилитель в классе «А» всегда потребляет большой ток, поэтому при выключении конденсаторы быстро разряжаются, чего нельзя сказать об усилителях в классе «АВ». Вот схема защиты АС, если вдруг кому интересно:

Из дополнительных опций в усилителе имеется:
– Регулятор громкости на микросхеме МАХ5440 с энкодером,
– Цифровая индикация температуры радиаторов,
– Световая сигнализация перегрева радиаторов свыше заданного уровня.

Регулятор громкости на микросхеме МАХ5440 с энкодером

Со временем в обычных потенциометрах изнашивается токопроводящий слой, из-за чего, при регулировании громкости возникают посторонние звуки, скрипы, щелчки и т.д., поэтому я решил избавиться от обычного потенциометра и собрать цифровой. Наткнулся на статейку у Радиокотов про эту МАХ5440, почитал, и решил остановиться на ней, т.к. знаний в программировании МК не имею, а эта микруха уже прошита, только схему собирай и готово. Но цена за такое удовольствие нехилая, я отдал 300 СВОИХ рублей. -) Вот схема:

Цифровая индикация температуры радиаторов

Поскольку усилитель в классе «А» имеет дурную привычку греться, причём всегда, то неплохо было бы знать температуру радиаторов, и чтобы не проверять на ощупь, я решил собрать вот такую схемку, на знакомой многим микросхеме ICL7107 (КР572ПВ2А).

Ну и от нефиг делать собрал ещё аварийную индикацию перегрева на двух ОУ:

У меня индикация чисто световая, но при желании можно вместо светодиода прикрутить например реле, симистор, или ещё что-нибудь управляющее, например отключением питания усилителя, или отключением акустики, что в моём случае бесполезно, т.к. для этого усилителя отключение нагрузки не значит ничего, УНЧ продолжит греться дальше, а вот для усилителей любого другого класса – пожалуйста.

Вся необходимая документация для сборки усилителя имеется в прикрепленном архиве.

Тема: Питание класса А

Опции темы

Питание класса А

Всем привет. В очередной раз совершенствую усилитель класса А.
Его блок питания во вложении.
Вопрос по резисторам R1 R2. Надо ли ставить? Если надо, в какое место? Номинал?

Варианты:
– сразу после трансформатора
– между мостом и схемой
– после С1 С2 и т.д.

Сама схема многократно собиралась и ее работа не вызывает вопросов.
НО если будут замечания, дополнения и т.д, не стеснястесь, не обижусь Раньше резисторы не ставил.

Мои собственные соображения таковы. Трансформатор в такой схеме испытывает импульсные перегрузки. Его выходное сопротивление невысоко. Резисторы призваны ограничить импульсы зарядного тока. Т.к. их источник – обмотка, то место резисторов – перед мостом.

А мнение общества?
[/OFF]Просьба Konkere: можно ли сделать миниатюру?[OFF]
С уважением

Последний раз редактировалось ИГВИН; 18.05.2010 в 23:42 .

Re: Питание класса А

А ты схему сам рисовал или взял откуда? А то интересно так задавать вопросы по своей работающей схеме

Малоомным резисторам пофиг где стоять, ток с обоих концов одинаковый, напряжение так же примерно одинаково. Лучше подумать где будет проще от них отвести тепло.
Я не помню как у примененных тобой транзисторов, но тут не помешали бы по два диода: один между СИ в обратном включении, второй ЗИ так же в обратном. Это на случай если нагрузка оказалась нестандартная

Re: Питание класса А

Вопрос по резисторам R1 R2. Надо ли ставить? Если надо, в какое место? Номинал?

Варианты:
– сразу после трансформатора
– между мостом и схемой
– после С1 С2 и т.д.

А может после моста дроссели воткнуть, вместо резисторов то. Чтоб они все помехи на ВЧ от импульсных бросков cглаживали. У С.Рубцова – 80миллигенри Противофазный.
http://www.shemki.com/schemes.htm
Вопрос всем.
У RSD это, как я понимаю, для борьбы с пульсациями 100Гц. А если требуется лишь их высшие гармоники гасить, те что излучаются (т.к 100Гц и транзисторный фильтр сгладит), наверное можно и сильно поменьше индуктивность.
Вместо раздельных дросселей лучше наверное две обмотки на одном сердечнике. Но вот если его ставить для борьбы с ВЧ гармониками токовых бросков, (а заодно он и как доп. сетевой будет), то какой ставить? Если перед первичкой ставят синфазный дроссель в качестве сетевого фильтра (+ессно кондюки), то после моста он противофазный или синфазный должен быть?

[ADDED=Эx, залужу. ]1118701283[/ADDED]
ИГВИН,

Вот тут чутка разных мнений http://forum.vegalab.ru/showthread.p. 3903#post13903
Правда там все больше про трансы, но про резюки, дроссели и помехи вскользь упоминается.

Последний раз редактировалось Эx, залужу. ; 14.06.2005 в 02:21 .

Выбираем комплект: усилитель низкой частоты + блок питания

Усилитель звуковой частоты (УЗЧ), или усилитель низкой частоты (УНЧ) является одним из самых распространенных электронных устройств. Все мы получаем звуковую информацию, используя ту или иную разновидность УНЧ. Не все знают, но усилители низкой частоты используются также в измерительной технике, дефектоскопии, автоматике, телемеханике, аналоговой вычислительной технике и других областях электроники.

Хотя, конечно же, основное применение УНЧ – донести до нашего слуха звуковой сигнал с помощью акустических систем, преобразующих электрические колебания в акустические. И сделать это усилитель должен максимально точно. Только в этом случае мы получаем то удовольствие, которое доставляют нам любимая музыка, звуки и речь.

С появления в 1877 фонографа Томаса Эдисона до настоящего времени, ученые и инженеры боролись за улучшение основных параметров УНЧ: прежде всего за достоверность передачи звуковых сигналов, а также за потребительские характеристики, такие как потребляемая мощность, размеры, простота изготовления, настройки и использования.

Начиная с 1920-ых годов сформировалась буквенная классификация классов электронных усилителей, которая используется и по сей день. Классы усилителей отличаются режимами работы применяемых в них активных электронных приборов – электронных ламп, транзисторов и т.д. Основными «однобуквенными» классами являются A, B, C, D, E, F, G, H. Буквы обозначений классов могут сочетаться в случае совмещения некоторых режимов. Классификация не является стандартом, поэтому разработчики и производители могут использовать буквы достаточно произвольно.

Особое место в классификации занимает класс D. Активные элементы выходного каскада УНЧ класса D работают в ключевом (импульсном) режиме, в отличие от остальных классов, где большей частью используется линейный режим работы активных элементов.

Одним из основных преимуществ усилителей класса D является коэффициент полезного действия (КПД), приближающийся к 100%. Это, в частности, приводит к уменьшению рассеиваемой активными элементами усилителя мощности, и, как следствие, уменьшению размеров усилителя за счет уменьшения размеров радиатора. Такие усилители предъявляют значительно меньшие требования к качеству источника питания, который может быть однополярным и импульсным. Другим преимуществом можно считать возможность применения в усилителях класса D цифровых методов обработки сигнала и цифрового управления их функциями – ведь именно цифровые технологии преобладают в современной электронике.

С учетом всех этих тенденций компания Мастер Кит предлагает широкий выбор усилителей класса D, собранных на одной и той же микросхеме TPA3116D2, но имеющих различное назначение и мощность. А для того, чтобы покупатели не тратили время на поиски подходящего источника питания, мы подготовили комплекты усилитель + блок питания, оптимально подходящие друг к другу.

В этом обзоре мы рассмотрим три таких комплекта:

  1. MP3116mini + LRS-100-24 (Усилитель НЧ D-класса 2х50Вт + источник питания 24В / 100Вт / 4,5A);
  2. MP3116 + LRS-200-24 (Усилитель НЧ D-класса 2х100Вт + источник питания 24В / 200Вт / 8,8A);
  3. MP3116btl + LRS-200-24 (Усилитель НЧ D-класса 1х150Вт + источник питания 24В / 200Вт / 8,8A).

Первый комплект предназначен, прежде всего для тех, кому необходимы минимальные размеры, стереозвук и классическая схема регулировки одновременно в двух каналах: громкость, низкие и высокие частоты. Он включает в себя усилитель MP3116mini и блок питания LRS-100-24.

Сам двухканальный усилитель имеет беспрецедентно маленькие размеры: всего 60 х 31 х 13 мм, не включая ручек регуляторов. Размеры блока питания 129 х 97 х 30 мм, вес – около 340 г.

Несмотря на небольшие размеры, усилитель отдает в нагрузку 4 ома честные 50 ватт на канал при напряжении питания 21 вольт!

В качестве предварительно усилителя применена микросхема RC4508 – двойной специализированный операционный усилитель для аудиосигналов. Он позволяет идеально согласовать вход усилителя с источником сигнала, имеет крайне низкие нелинейные искажения и уровень шума.

Входной сигнал подается на трехконтактный разъем с шагом контактов 2,54 мм, напряжение питания и акустические системы подключаются с помощью удобных винтовых разъемов.

На микросхему TPA3116 с помощью теплопроводящего клея установлен небольшой радиатор, площади рассеяния которого вполне хватает даже на максимальной мощности.

Обращаем ваше внимание на то, что с целью экономии места и уменьшения размеров усилителя отсутствует защита от неверной полярности подключения источника питания (переполюсовки), поэтому будьте внимательны при подаче питания на усилитель.

С учетом небольших размеров и эффективности сфера применения комплекта весьма широка – от замены устаревшего или вышедшего из строя старого усилителя до очень мобильного звукоусилительного комплекта для озвучивания мероприятия или вечеринки.

Пример использования такого усилителя приведен здесь.

На плате отсутствуют отверстия для крепления, но для этого с успехом можно использовать потенциометры, имеющие крепления под гайку.

Второй комплект включает в себя стереоусилитель MP3116 на двух микросхемах TPA3116D2, каждая из которых включена в мостовом режиме и обеспечивает до 100 ватт выходной мощности на канал, а также источник питания LRS-200-24 с выходным напряжением 24 вольта и мощностью 200 ватт.

С помощью такого комплекта и двух 100-ваттных акустических систем можно озвучить солидное мероприятие даже вне помещения!

Усилитель снабжен регулятором громкости с выключателем. На плате установлен мощный диод Шоттки для защиты от переполюсовки блока питания.

Усилитель снабжен эффективными фильтрами низкой частоты, установленными согласно рекомендациям производителя микросхемы TPA3116, и обеспечивающими совместно с ней высокое качество выходного сигнала.

Питающее напряжение и акустические системы подключаются с помощью винтовых разъемов.

Входной сигнал может быть подан как на трехконтактый разъем с шагом 2,54 мм, так и с помощью стандартного аудиоразъема типа Jack 3,5 мм.

Радиатор обеспечивает достаточное охлаждение обеих микросхем и прижимается к их термопадам винтом, расположенным с нижней части печатной платы.

Для удобства использования на плате также установлен светодиод зеленого свечения, сигнализирующий о включении питания.

Размеры платы, с учетом конденсаторов и без учета ручки потенциометра составляют 105 х 65 х 24 мм, расстояния между крепежными отверстиями – 98,6 и 58,8 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Третий комплект представляет собой одноканальный усилитель низкой частоты MP3116btl и блок питания LRS-200-24 с выходным напряжением 24 вольта и мощностью 200 ватт.

Усилитель обеспечивает до 150 ватт выходной мощности на нагрузке 4 ома. Основное применение этого усилителя – построение качественного и энергоэффективного сабвуфера.

По сравнению со многими другими специализированными сабвуферными усилителями, MP3116btl отлично раскачивает низкочастотные динамики достаточно большого диаметра. Это подтверждается отзывами покупателей рассматриваемого УНЧ. Звук получается насыщенный и яркий.

Радиатор, занимающий большую часть площади печатной платы обеспечивает эффективное охлаждение TPA3116.

Для согласования входного сигнала на входе усилителя применена микросхема NE5532 – двухканальный малошумящий специализированный операционный усилитель. Он имеет минимальные нелинейные искажения и широкую полосу пропускания.

На входе также установлен регулятор амплитуды входного сигнала со шлицем под отвертку. С его помощью можно подстроить громкость сабвуфера под громкость основных каналов.

Для защиты от переполюсовки питающего напряжения на плате установлен диод Шоттки.

Питание и акустические системы подключаются с помощью винтовых разъемов.

Размеры платы усилителя 73 х 77 х 16 мм, расстояния между крепежными отверстиями – 69,4 и 57,2 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Во все комплекты включены импульсные источники питания компании MEAN WELL.

Основанная в 1982 году, компания является ведущим производителем импульсных источников питания в мире. В настоящее время корпорация MEAN WELL состоит из пяти финансово независимых компаний-партнеров на Тайване, в Китае, США и Европе.

Продукция MEAN WELL характеризуется высоким качеством, низким процентом отказов и длительным сроком службы.

Импульсные источники питания, разработанные на современной элементной базе, удовлетворяют самым высоким требованиям по качеству выходного постоянного напряжения и отличаются от обычных линейных источников малым весом и высоким КПД, а также наличием защиты от перегрузки и короткого замыкания на выходе.

Источники питания LRS-100-24 и LRS-200-24, используемые в представленных комплектах, имеют светодиодный индикатор включения и потенциометр для точной регулировки выходного напряжения. Перед подключением усилителя проверьте выходное напряжения, и при необходимости выставьте его уровень на 24 вольта с помощью потенциометра.

В примененных источниках используется пассивное охлаждение, поэтому они совершенно бесшумны.

Необходимо отметить, что все рассмотренные усилители могут быть с успехом применены для конструирования звуковоспроизводящих систем для автомобилей, мотоциклов и даже велосипедов. При питании усилителей напряжением 12 вольт выходная мощность будет несколько меньше, но качество звука не пострадает, а высокий КПД позволяет эффективно питать УНЧ от автономных источников питания.

ДОМАШНИЙ УСИЛИТЕЛЬ – БЛОК УМЗЧ

После успешного запуска блока питания, переходим к самой интересной части конструкции – блок усилителей мощности звука. В том числе фильтр низких частот для сабвуфера и модуль стабилизации. Напоминаем, что все схемы и чертежи плат – в первой части.

УСИЛИТЕЛЬ ДЛЯ САБВУФЕРА ПО СХЕМЕ ЛАНЗАРА

Выходной каскад усилителя построен на паре 2SA1943 и 2SC5200, все каскады собраны на максимально близких по параметрам комплиментарных парах, усилитель построен полностью по симметричной основе. Номинальная выходная мощность усилителя составляет 230-280 ватт, но можно снять гораздо больше, повышая входное напряжение питания.

Номиналы ограничительных резисторов дифференциальных каскадов подбирается исходя от входного напряжения. Ниже приведена таблица.

Питание ±70 В – 3,3 кОм. 3,9 кОм
Питание ±60 В – 2,7 кОм. 3,3 кОм
Питание ±50 В – 2,2 кОм. 2,7 кОм
Питание ±40 В – 1,5 кОм. 2,2 кОм
Питание ±30 В – 1,0 кОм. 1,5 кОм

Эти резисторы подбираются с мощностью 1-2 ватт, в ходе работы на них может наблюдаться тепловыделение.

Регулирующий транзистор заменил на отечественный КТ815, на тот момент другого не было под рукой. Он предназначен для регулировки тока покоя выходных каскадов, в ходе работы не перегревается, но укреплен на общий теплоотвод с транзисторами выходного каскада.

Первый запуск схемы желательно сделать от сетевого блока питания, последовательно сетевой обмотке трансформатора подключите накальную лампу на 100-150 ватт, если будут проблемы, то спалите минимум деталей. А вообще, схема Ланзара не критична к монтажу и компонентам, я пробовал даже с широким разбросом используемых компонентов, с использованием отечественных радиодеталей – схема показывает высокие параметры даже в этом случая. Принципиальная схема Ланзара имеет две основные версии – на биполярных транзисторах и с применением полевых ключей в предпоследнем каскаде, в моем случае первая версия.

Второй предвыходной каскад работает в чистом классе “А“, поэтому в ходе работы транзисторы перегреваются. Транзисторы этого каскада обязательно устанавливают на теплоотвод, желательно общий, не забудьте про изоляции – слюдяные пластины и изолирующие шайбы для шурупов.

Правильно собранная схема заводится без всяких проблем. Первый запуск делаем с ЗАКОРОЧЕННЫМ НА ЗЕМЛЮ ВХОДОМ , т.е. вход усилителя стыкуем с средней точкой с блока питания. Если после запуска ничего не взорвалось, то можно отсоединять вход от земли. Дальше подключаем нагрузку – динамик и включаем усилитель. Для того, чтобы убедиться в работоспособности усилителя, достаточно дотронуться до оголенного входного провода. Если в головке появляется своеобразный рев – то усилитель работает! Дальше можно укрепить все силовые части на теплоотводы и подать на вход усилителя звуковой сигнал. После 15-20 минут работы на 30-50% от максимальной громкости нужно настроить ток покоя. На фотографии все детально показано, в качестве индикатора напряжение желательно использовать цифровой мультиметр.

Как выставить ток покоя

ФНЧ И БЛОК СТАБИЛИЗАЦИИ

Фильтр низкой частоты и сумматора построен на двух микросхемах. Он предназначен для плавной регулировки фазы, громкости и частоты. Сумматор предназначен для суммирования сигналов обеих каналов, для получения более мощного сигнала. В промышленных автоусилителях высокой мощности используется именно такой принцип фильтрации и суммирования сигнала, но сумматор можно при желании исключить из схемы и обойтись только фильтром низких частот. Фильтр срезает все частоты, оставляя только предел в пределах 35-150 Гц.

Регулировка фазы позволяет согласовать сабвуфер с акустическими системами, в некоторых случаях её тоже исключают.

Этот блок питается от стабилизированного источника двухполярного напряжения +/-15 Вольт. Питание можно организовать с помощью дополнительной вторичной обмотки или же использовать двухполярный стабилизатор напряжения для понижения напряжения от основной обмотки.

Для этого собран двухполярный стабилизатор. Первоначально напряжение снижается диодами зенера, затем усиливается биполярными транзисторами и подается на линейные стабилизаторы напряжения типа 7815 и 7915. На выходе стабилизатора образуется стабильное двухполярное питание, которым и питается блок сумматора и ФНЧ.

Стабилизаторы и транзисторы могут греться, но это вполне нормально, при желании их можно укрепить на теплоотводы, но в моем случае имеется активное охлаждение кулером, поэтому теплоотводы не пригодились, к тому же тепловыделение в пределах нормы, поскольку сам блок ФНЧ потребляет очень мало.

ОПЛЕУХА МИКРОСХЕМАМ

Оплеуха микрухам – не самый простой, но высококачественный усилитель мощности НЧ. Усилитель способен развивать максимальную выходную мощность в 130 ватт и работает в довольно широком диапазоне входного напряжения. Выходной каскад усилителя построен на паре 2sa1943 2sc5200 и работает в режиме АВ. Эта версия, автором была разработана в этом году, ниже ее основные параметры.

Диапазон питающих напряжений = +/- 20В . +/- 60В

Номинальное напряжение питания (100Вт, 4 Ом) = +/- 36В

Номинальное напряжение питания (100Вт, 8 Ом) = +/- 48В

С мощностью все понятно, а что со стороны искажений?

Совсем не дурно, почти hi-end! На самом деле если ориентироваться только по КНИ, то этот усилитель полноценный HI-END, но для хай-энда этого не достаточно, поэтому его отнесли к старому и доброму разряду hi-fi.

Несмотря на то, что усилитель развивает всего 100 ватт, он на порядок сложнее аналогичных схем, но сама сборка не составит труда при наличии всех компонентов. Отклонять номиналы схемы не советую – мой опыт это подтверждает.

Маломощные транзисторы в ходе работы могут перегреваться, но волноваться не стоит – это их нормальный режим работы. Выходной каскад, как уже сказал, работает в классе АВ, следовательно, выделятся огромное количество тепла, которое нужно отводить. В моем случае они укреплены на общий теплоотвод, которого более, чем достаточно, но на всякий случай, имеется также и активное охлаждение.

После сборки нас ждет первый запуск схемы. Для этого советую еще раз прочитать запуск и настройку Ланзара – тут все делается точно таким же образом. Первый запуск делаем с закороченной на землю входом, если все ОК, то размыкаем вход и подаем звуковой сигнал. К тому времени все силовые компоненты должны быть укреплены на теплоотвод, а то восхищаясь музыкой можете не заметить, как дымят ключи выходного каскада – каждый из них стоит очень и очень. А про блок защиты в узнаете в следующем материале. С уважением – АКА КАСЬЯН.

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ – БЛОК УМЗЧ

Ссылка на основную публикацию